16 research outputs found

    A Novel Tomato Volume Measurement Method based on Machine Vision

    Get PDF
    Density is one of the auxiliary indicators for judging the internal quality of tomatoes. However, in the density measurement process, it is often difficult to measure the volume of the tomatoes accurately. To solve this problem, first, this study proposed a novel tomato volume measurement method based on machine vision. The proposed method uses machine vision to measure the geometric feature parameters of tomatoes, and inputs them into the LabVIEW software to convert the calculation of irregular tomato volume into a BP neural network (BPNN) model that calculates the plane pixel area and pixel volume, thereby realizing the modeling, analysis, design and simulation of tomato volume; then, an experimental platform was constructed to compare the results of the proposed method with the results predicted by the 3D wireframe model. When the number of photos taken was n = 5, the average error of the tomato volume prediction results of the 3D wireframe model was 8.22%, and the highest accuracy was 92.93%; while the average error of the tomato volume prediction results of the BPNN was 4.60%, and the highest accuracy was 95.60%. Increasing the number of orthographic projections can improve the accuracy of the model, but when the number of photos was more than 7, the accuracy improvement was not significant. Also, increasing the number of nodes in the hidden layer can improve the accuracy of the model, however, considering that increasing the number of nodes will increase the host operating cost, it is suggested to choose a node number of 12 for the tomato volume measurement. In the end, the final experimental results showed that the proposed method achieved better measurement results. However, the volume measured by the two models is larger than the real volume of tomatoes. For this reason, we added a correction coefficient to the BPNN model, and its highest accuracy has increased by 1.3%

    Simulation Design of a Tomato Picking Manipulator

    Get PDF
    Simulation is an important way to verify the feasibility of design parameters and schemes for robots. Through simulation, this paper analyzes the effectiveness of the design parameters selected for a tomato picking manipulator, and verifies the rationality of the manipulator in motion planning for tomato picking. Firstly, the basic parameters and workspace of the manipulator were determined based on the environment of a tomato greenhouse; the workspace of the lightweight manipulator was proved as suitable for the picking operation through MATLAB simulation. Next, the maximum theoretical torque of each joint of the manipulator was solved through analysis, the joint motors were selected reasonably, and SolidWorks simulation was performed to demonstrate the rationality of the material selected for the manipulator and the strength design of the joint connectors. After that, the trajectory control requirements of the manipulator in picking operation were determined in view of the operation environment, and the feasibility of trajectory planning was confirmed with MATLAB. Finally, a motion control system was designed for the manipulator, according to the end trajectory control requirements, followed by the manufacturing of a prototype. The prototype experiment shows that the proposed lightweight tomato picking manipulator boasts good kinematics performance, and basically meets the requirements of tomato picking operation: the manipulator takes an average of 21 s to pick a tomato, and achieves a success rate of 78.67%

    Impact forces of water drops falling on superhydrophobic surfaces

    Get PDF
    A falling liquid drop, after impact on a rigid substrate, deforms and spreads, owing to the normal reaction force. Subsequently, if the substrate is non-wetting, the drop retracts and then jumps off. As we show here, not only is the impact itself associated with a distinct peak in the temporal evolution of the normal force, but also the jump-off, which was hitherto unknown. We characterize both peaks and elucidate how they relate to the different stages of the drop impact process. The time at which the second peak appears coincides with the formation of a Worthington jet, emerging through flow-focusing, and it is independent of the impact velocity. However, the magnitude of this peak is dictated by the drop's inertia and surface tension. We show that even low-velocity impacts can lead to a surprisingly high peak in the normal force, namely when a more pronounced singular Worthington jet occurs due to the collapse of an air cavity in the drop.Comment: Please find the supplemental movies here: https://youtube.com/playlist?list=PLf5C5HCrvhLGmlYTF1Gg2WviZ-Bkmy2q

    Design of a tomato classifier based on machine vision.

    No full text
    This paper attempts to design an automated, efficient and intelligent tomato grading method that facilitates the graded selling of the fruit. Based on machine vision, the color images of tomatoes with different morphologies were studied, and the color, shape and size were selected as the key features. On this basis, an automated grading classifier was created based on the surface features of tomatoes, and a grading platform was set up to verify the effect of the classifier. Specifically, the Hue value distributions of tomatoes with different maturities were investigated, and the Hue value ranges were determined for mature, semi-mature and immature tomatoes, producing the color classifier. Next, the first-order Fourier descriptor (1D- FD) was adopted to describe the radius sequence of tomato contour, and an equation was established to compute the irregularity of tomato contour, creating the shape classifier. After that, a linear regression equation was constructed to reflect the relationship between the transverse diameters of actual tomatoes and tomato images, and a classifier between large, medium and small tomatoes was produced based on the transverse diameter. Finally, a comprehensive tomato classifier was built based on the color, shape and size diameters. The experimental results show that the mean grading accuracy of the proposed method was 90.7%. This means our method can achieve automated real-time grading of tomatoes

    A “Global–Local” Visual Servo System for Picking Manipulators

    No full text
    During the process of automated crop picking, the two hand–eye coordination operation systems, namely “eye to hand” and “eye in hand” have their respective advantages and disadvantages. It is challenging to simultaneously consider both the operational accuracy and the speed of a manipulator. In response to this problem, this study constructs a “global–local” visual servo picking system based on a prototype of a picking robot to provide a global field of vision (through binocular vision) and carry out the picking operation using the monocular visual servo. Using tomato picking as an example, experiments were conducted to obtain the accuracies of judgment and range of fruit maturity, and the scenario of fruit-bearing was simulated over an area where the operation was ongoing to examine the rate of success of the system in terms of continuous fruit picking. The results show that the global–local visual servo picking system had an average accuracy of correctly judging fruit maturity of 92.8%, average error of fruit distance measurement in the range 0.485 cm, average time for continuous fruit picking of 20.06 s, and average success rate of picking of 92.45%

    Impact Forces of Water Drops Falling on Superhydrophobic Surfaces

    No full text
    A falling liquid drop, after impact on a rigid substrate, deforms and spreads, owing to the normal reaction force. Subsequently, if the substrate is nonwetting, the drop retracts and then jumps off. As we show here, not only is the impact itself associated with a distinct peak in the temporal evolution of the normal force, but also the jump-off, which was hitherto unknown. We characterize both peaks and elucidate how they relate to the different stages of the drop impact process. The time at which the second peak appears coincides with the formation of a Worthington jet, emerging through flow focusing. Even low-velocity impacts can lead to a surprisingly high second peak in the normal force, even larger than the first one, namely when the Worthington jet becomes singular due to the collapse of an air cavity in the drop

    Design of and Experiments with an Automatic Cuttage Device for an Arch Shed Pillar with Force Feedback

    No full text
    In order to realize the automatic cutting of arch shed pillars, an automatic cuttage device for an arch shed pillar with force feedback was designed in this study. First, the wind resistance of the arch shed was simulated and analyzed using ANSYS, and the cuttage depth of the arch shed pillar was determined. According to the environment for the cuttage operation of the arch shed pillar and the agronomic requirements, such as the arch shed span, arch shed height, and cuttage depth, the function, structure, and basic design parameters of the arch shed automatic cuttage device were determined. Then, to reduce the damage rate of the pillar and achieve equal-depth cuttage, a force feedback system for the actuator of the cuttage device was constructed to estimate the cuttage resistance and depth in real time. To reduce the impact of the starting and stopping of each motor in the actuator, trajectory planning of the execution end in the pillar transfer stage was performed in the Cartesian coordinate system. The motion law of portal trajectory based on the Láme curve was analyzed, and MATLAB simulations were used to solve the relevant motion parameters. In addition, the modality of key components of the cuttage device was simulated and analyzed by using the SOLIDWORKS simulation plug-in. Finally, the experimental prototype was constructed according to the simulation results. The simulation and field cuttage experiments showed that the cuttage device produced equal-depth cuttage for the arch shed pillar, where the depth of the arch shed pillar was 10 cm, the average cuttage time of a single pillar was 6.2 s, and the error of the cuttage depth was ±0.5 cm in wet soil. The operation of the device was stable, as evidenced by the smooth and mutation-free operation trajectory and speed curve of the execution end. The results of the modal experiment suggest that resonance would not occur during the operation for resonance frequencies between 303 Hz and 565 Hz. This arch shed pillar automatic cuttage device has an optimal operation performance and meets the agronomic requirements of arch shed pillar cuttage

    Design of and Experiments with an Automatic Cuttage Device for an Arch Shed Pillar with Force Feedback

    No full text
    In order to realize the automatic cutting of arch shed pillars, an automatic cuttage device for an arch shed pillar with force feedback was designed in this study. First, the wind resistance of the arch shed was simulated and analyzed using ANSYS, and the cuttage depth of the arch shed pillar was determined. According to the environment for the cuttage operation of the arch shed pillar and the agronomic requirements, such as the arch shed span, arch shed height, and cuttage depth, the function, structure, and basic design parameters of the arch shed automatic cuttage device were determined. Then, to reduce the damage rate of the pillar and achieve equal-depth cuttage, a force feedback system for the actuator of the cuttage device was constructed to estimate the cuttage resistance and depth in real time. To reduce the impact of the starting and stopping of each motor in the actuator, trajectory planning of the execution end in the pillar transfer stage was performed in the Cartesian coordinate system. The motion law of portal trajectory based on the Láme curve was analyzed, and MATLAB simulations were used to solve the relevant motion parameters. In addition, the modality of key components of the cuttage device was simulated and analyzed by using the SOLIDWORKS simulation plug-in. Finally, the experimental prototype was constructed according to the simulation results. The simulation and field cuttage experiments showed that the cuttage device produced equal-depth cuttage for the arch shed pillar, where the depth of the arch shed pillar was 10 cm, the average cuttage time of a single pillar was 6.2 s, and the error of the cuttage depth was ±0.5 cm in wet soil. The operation of the device was stable, as evidenced by the smooth and mutation-free operation trajectory and speed curve of the execution end. The results of the modal experiment suggest that resonance would not occur during the operation for resonance frequencies between 303 Hz and 565 Hz. This arch shed pillar automatic cuttage device has an optimal operation performance and meets the agronomic requirements of arch shed pillar cuttage
    corecore